Retour à l'applet

Amplificateur opérationnel réel

Si on retient le modèle d'un système du premier ordre, le gain en boucle ouverte de l'amplificateur est donné par :

$$A = \frac{A_0}{1 + j\omega/\omega_0}$$

Amplificateur inverseur:

On pose $K = R_2/R_1$.

Pour un amplificateur idéal ,la fonction de transfert vaut S/E = H = -KPour un amplificateur réel, on a :

$$H = -\frac{K}{1 + \frac{K+1}{A_0} \left(1 + j\frac{\omega}{\omega_0}\right)} = \frac{A_1}{1 + j\frac{\omega}{\omega_1}}$$
(1)
avec : $A_1 = -\frac{K}{1 + \frac{K+1}{A_0}}$ et $\omega_1 = \omega_0 \left(1 + \frac{A_0}{1 + K}\right)$

Amplificateur non inverseur:

Pour un amplificateur idéal ,la fonction de transfert vaut S/E = H = K + 1Pour un amplificateur réel, on a :

$$H = \frac{K+1}{1 + \frac{K+1}{A_0} \left(1 + j\frac{\omega}{\omega_0}\right)} = \frac{A_1}{1 + j\frac{\omega}{\omega_1}}$$
(2)

$$avec: A_1 = \frac{K+1}{1 + \frac{K+1}{A_0}} \qquad et \qquad \omega_1 = \omega_0 \left(1 + \frac{A_0}{1+K}\right)$$

Amplificateur sommateur:

Pour un amplificateur idéal ,la fonction de transfert vaut $S = -K(E_1 + E_2)$ Pour un amplificateur réel, il faut remplacer -K par l'expression (1):

En posant $x = \omega/\omega_1$, on obtient :

$$\|H\| = G = \frac{A_1}{\sqrt{1 + x^2}}$$
 et $\phi(x) = -Arctg(x)$ (3)

Retour à l'applet